
- Modélisation de l'activité SMUR terrestre et héliportée
- Développement d'un outil d'aide à la décision pour
 le dimensionnement des lignes SMUR terrestres et héliportées
- C. Duboudin (ARS-FC), D. Carel (ARS-FC)Dr JM Labourey (CRRA15-CHU-Besançon)

Contexte Régional

2 CRRA 15

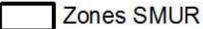
- -Besançon pour les départements du Doubs, du Jura et de la Haute-Saône et Belfort (0h-8h)
- -Belfort (8h-24h)
- 13 implantations de SMUR (avec 1 ou 2 équipes suivant les cas)
 - 10 services d'urgence
 - 3 centres de consultation non programmée
 - Sollicitation de l'hélicoptère de la sécurité civile

Des secteurs contrastés

- -Densité de population importante (urbanisation forte) d'où activité SMUR+++
- -Etendue géographique importante
- -Accessibilité routière difficile en particulier l'hiver mais activité SMUR----

Temps d'accès SMUR

1 - 10 minutes


11 - 20 minutes

21 - 30 minutes

31 - 40 minutes

41 - 58 minutes

Médecins correspondants du SAMU (MCS)

septembre 2014

... en quelques chiffres par an

- ☐ 110 000 appels au 15 régulés médicalement
- ☐ Près de 17 000 interventions primaires des Services mobiles d'urgence et de réanimation (SMUR) : domicile, voie publique, ...
- ☐ 2500 interventions inter-hospitalières dont 60 % vers le CHRU
- ☐ 600 missions héliportées dont 500 avec la sécurité civile (correspond à 60% des sollicitations)

Les points de départ de l'étude

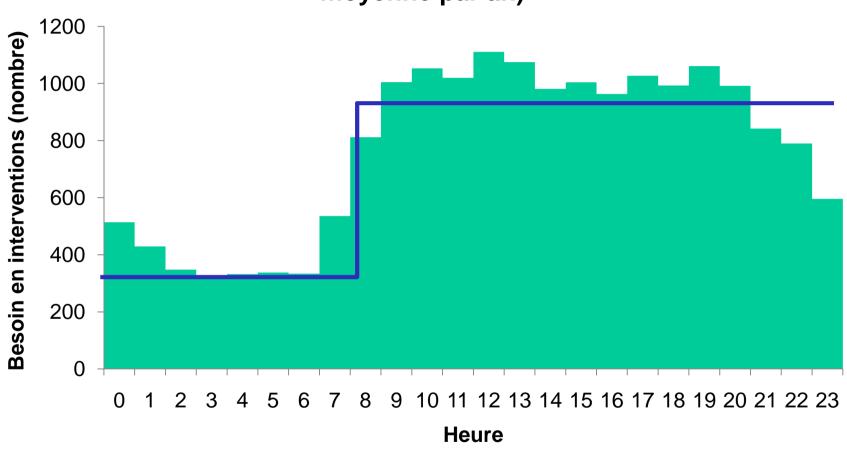
- **1300 indisponibilités** de SMUR par an sur la région (étude ARS 2011) = 8 % des besoins primaires, principalement situées sur les secteurs de Montbéliard, Belfort, Besançon
- Liées aux interventions aux limites des secteurs et aux interventions inter-hospitalières (2500)
- Un hélicoptère de la sécurité civile disponible dans 60 % des sollicitations mais très peu de secondaires effectués par ce partenaire
- L'engagement présidentiel concernant l'accès à des soins urgents en moins de 30 mn en se focalisation sur les SMUR, modification de la sectorisation ? mise en place d'une nouvelle ligne ?

Méthode : réalisation d'un modèle et d'un simulateur

- —— Pourquoi une modélisation et un simulateur ?
- Pour objectiver et tester des hypothèses d'évolution de l'offre et évaluer son impact sur la charge des équipes et en particulier les indisponibilités
 - Introduction d'un héliSMUR
 - -Ajout d'une antenne de SMUR
 - -Réduction de ligne (équipe)
 - Suppression d'une implantation de SMUR
 - Modification de la sectorisation

Méthode : Réalisation d'un modèle et d'un simulateur

- 1. Déclinaison opérationnelle et régionale de la doctrine d'emploi de l'hélicoptère dans le cadre des missions SMUR, indépendamment de la couleur...
- 2. Analyse statistique temporelle et spatiale du besoin d'interventions SMUR sur la région : par l'emploi de méthodes de régression multilinéaire (Idem sur les durées d'intervention)
- 3. Construction d'un modèle et réalisation d'un simulateur (Excel) permettant : (1) la simulation du besoin d'interventions SMUR primaires et secondaires et des durées d'intervention à l'échelle de la commune ; (2) la prédiction des indisponibilités attendues au regard du dimensionnement de l'offre
 - 4. Elaboration et test de scénarios


<u> Matériel</u>

- Etude des données 2010-2012 issues des CRRA 15 de Besançon et de Belfort sur le besoin d'interventions SMUR primaires et secondaires
- —— Pour chaque **besoin** d'intervention SMUR, on dispose :
 - de la date et de l'heure de l'appel au 15
 - de la Commune où l'intervention devrait avoir lieu
- Pour chaque intervention SMUR, on dispose en plus :
 - Du ou des SMUR qui interviennent
 - De l'heure de fin de prise en charge médicale et de fin d'intervention
 - Du transport ou non vers une structure hospitalière
 - De la médication ou non du transport
 - Du moyen de transport (pompiers, ambulanciers, AR SMUR, hélicoptère)

Malheureusement, toutes ces données ne sont pas renseignées avec la même qualité

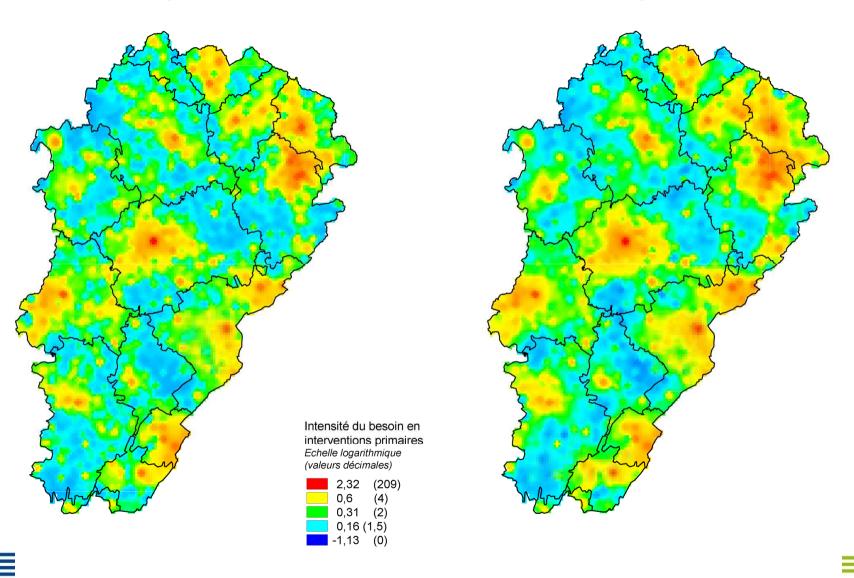
Modélisation

Intensité du besoin en interventions Smur par heure (en moyenne par an)

Besoin d'interventions primaires

Un modèle linéaire multiple dépendant des caractéristiques populationnelles de la commune

```
Nombre d'interventions nécessaires pour une commune, le jour (8h-0h) =
0,22
+0,0059 Population moins 75 ans (influence moyenne: 3,5)
+ 0,057 Population de plus de 75 ans
+ 0,0034 Nombre de chômeurs
                                                     (0,1)
- 0,056 Nombre d'emplois PCS 1+2 (Agriculteurs et artisans-commerçants-
        chefs d'entreprise)
                                                     (-1,2)
+0,0039 Nombre d'emplois PCS 3+4 (Professions intellectuelles supérieures
        et professions intermédiaires)
                                                     (0,4)
+0,027 Nombre d'emplois PCS 5 (employés)
                                                     (1,9)
-0,0017 Nombre d'emplois PCS 6 (ouvriers)
                                                     (-0,1)
```


Les coefficients directeurs sont significativement différents les uns des autres et différents de 0 au moins au seuil de 0,05

Zoom sur les petites communes (1 point = 1 commune)

Besoin en intervention SMUR primaires diurnes

Besoin Observé en interventions Smur primaires terrestres diurnes Besoin prédit en interventions Smur primaires terrestres diurnes

Besoin Observé

Besoin prédit

Temps d'interventions primaires nécessaires

Un modèle linéaire avec un effet secteur additif

Temps d'intervention terrestre en mn =

53 + 0,80*distance de la commune au SMUR du secteur en km + S_i

Secteur	Valeur Si
Lure et Luxeuil	7,6
Morez et Champagnole	0
Autres	-8,4

Influence du réseau routier et des zones montagneuses en particulier

Mais surtout de la destination du patient après intervention en cas de médicalisation du transport

Estimation des indisponibilités

- Utilisation d'une loi de probabilité statistique (Poisson) qui permet d'estimer la probabilité d'occurrence d'évènements rares
- Estimation à partir du besoin total d'interventions du nombre qui peut être effectués par une équipe, deux équipes, trois équipes, etc.
- Validation de cette loi par un tirage Monte Carlo : simulation de 1000 années d'intervention SMUR sur un secteur avec des caractéristiques variées : existence d'un biais compris entre 5 et 10 % avec une surestimation des indisponibilités par la loi de Poisson
- Autrement dit, la Loi de Poisson donne le bon ordre de grandeur en étant protectrice

		Nombre d'indisponibilités de SMUR (moyenne 2010-2012)	
Secteur	Nombre d'équipes	Observées	Prédites
BELFORT	1 LH24 + 1 noct partag	312	371
BESANCON	2 LH24 + 1 renfort jour	299	199
CHAMPAGNOLE	1 LH24	17	23
DOLE	1 LH24 + 1 jour	19	11
GRAY	1 LH24	41	34
LONS LE SAUNIER	2 LH24	34	15
LURE	1 LH24	38	56
LUXEUIL	1 L 9h-19h	29	49
MONTBELIARD	1 LH24 + 1 noct partag	407	475
MOREZ	1 LH24	9	5
PONTARLIER	1 LH24	51	118
ST CLAUDE	1 LH24	20	21
VESOUL	1 LH24 + 1 renfort jour	106	23
Total		1382	1400

Résultats

- Confirmation de l'acquisition d'un héliSMUR en complément de celui de la sécurité civile
- L'utilisation accrue de l'hélicoptère dans les missions SMUR (2000 inters prévues) permet un gain d'un ETP médical (non perdu dans les transports)
- L'augmentation de l'utilisation du moyen héliporté permet une réduction des indisponibilités au moins de 50 % avec un nombre d'équipes SMUR équivalent voire plus faible
- Proposition de la mise en place d'une antenne de SMUR dans le Haut Doubs (800 inters) et son impact sur les lignes de SMUR de Montbéliard, Besançon et Pontarlier

Résultats

- La modélisation permet de confirmer l'équité de prise en charge des habitants de la FC
- Le simulateur permet l'optimisation du nombre de lignes médicales de jour et de nuit : on passe du concept de nombre de lignes H24 à celui de nombre de lignes équivalentes H24
- Permet de documenter la question des lignes partagées SU/SMUR
- Confirme la pertinence d'identifier les indisponibilités, souvent sous estimées voire ignorées et de les utiliser comme un critère de dimensionnement